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At the heart of medicine lies physician–patient dialogue, where skillful history-taking 
enables effective diagnosis, management and enduring trust1,2. Artificial intelligence 
(AI) systems capable of diagnostic dialogue could increase accessibility and quality of 
care. However, approximating clinicians’ expertise is an outstanding challenge. Here 
we introduce AMIE (Articulate Medical Intelligence Explorer), a large language model 
(LLM)-based AI system optimized for diagnostic dialogue. AMIE uses a self-play-based3 
simulated environment with automated feedback for scaling learning across disease 
conditions, specialties and contexts. We designed a framework for evaluating clinically 
meaningful axes of performance, including history-taking, diagnostic accuracy, 
management, communication skills and empathy. We compared AMIE’s performance 
to that of primary care physicians in a randomized, double-blind crossover study of 
text-based consultations with validated patient-actors similar to objective structured 
clinical examination4,5. The study included 159 case scenarios from providers in Canada, 
the United Kingdom and India, 20 primary care physicians compared to AMIE, and 
evaluations by specialist physicians and patient-actors. AMIE demonstrated greater 
diagnostic accuracy and superior performance on 30 out of 32 axes according to the 
specialist physicians and 25 out of 26 axes according to the patient-actors. Our research 
has several limitations and should be interpreted with caution. Clinicians used 
synchronous text chat, which permits large-scale LLM–patient interactions, but this  
is unfamiliar in clinical practice. While further research is required before AMIE could 
be translated to real-world settings, the results represent a milestone towards 
conversational diagnostic AI.

The dialogue between the physician and the patient is fundamen-
tal to effective and compassionate care. The medical interview has 
been termed “the most powerful, sensitive, and most versatile instru-
ment available to the physician”2. In some settings, it is believed that 
60–80% of diagnoses are made through clinical history-taking alone6. 
The physician–patient dialogue extends beyond history-taking and 
diagnosis—it is a complex interaction that establishes rapport and trust, 
serves as a tool for addressing health needs and can empower patients 
to make informed decisions that account for their preferences, expec-
tations and concerns7. While there is wide variation in communication 
skills among clinicians, well-trained professionals can wield consider-
able skills in clinical history-taking and the wider ‘diagnostic dialogue’. 
However, access to this expertise remains episodic and globally scarce8.

Recent progress in general-purpose large language models (LLMs)9–11 
has shown that artificial intelligence (AI) systems have the capability to 
plan, reason and incorporate relevant context enough to hold natural-
istic conversations. This progress affords an opportunity to rethink the 

possibilities of AI in medicine towards the development of fully inter-
active conversational AI. Such medical AI systems would understand 
clinical language, intelligently acquire information under uncertainty 
and engage in natural, diagnostically useful medical conversations with 
patients and those who care for them. The potential real-world utility of 
AI systems capable of clinical and diagnostic dialogue is broad, with the 
development of such capabilities possibly improving access to diagnos-
tic and prognostic expertise, thus improving the quality, consistency, 
availability and affordability of care. A health equity-centric approach 
to integrating such technology into existing workflows, which implies 
work in the development, implementation and policy stages, may have 
the potential to help realize better health outcomes (particularly for 
populations facing healthcare disparities).

However, while LLMs have been shown to encode clinical knowl-
edge and have proven capable of highly accurate single-turn medical 
question-answering12–14, their conversational capabilities have been tai-
lored to domains outside clinical medicine15,16. Earlier work in LLMs for 
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health12–14,17,18 has not yet rigorously examined the clinical history-taking 
and diagnostic dialogue capabilities of AI systems or contextualized 
this by comparison to the extensive capabilities of practicing general-
ist physicians.

Clinical history-taking and diagnostic dialogue, through which 
clinicians derive diagnosis and management plans, represent a 
complex skill1 whose optimal conduct is highly dependent on con-
text. Thus, multiple evaluation axes are needed to assess the quality 
of a diagnostic dialogue, including the structure and completeness 
of the elicited history, diagnostic accuracy, the appropriateness of 
management plans and their rationale, and patient-centred consid-
erations, such as relationship-building, respect for the individual 
and communication efficacy19. If the conversational potential of 
LLMs is to be realized in medicine, there is an important unmet 
need to better optimize the development and evaluation of medi-
cal AI systems for characteristics such as these, which are unique 
to history-taking and diagnostic dialogue between clinicians and  
patients.

Here we detail our progress towards a conversational medical AI 
system for clinical history-taking, diagnostic reasoning and commu-
nication efficacy. We also outline some key limitations and directions 
for future research.

Our key contributions (Fig. 1) are summarized here. We first intro-
duced AMIE (Articulate Medical Intelligence Explorer), an LLM-based 
AI system optimized for clinical history-taking and diagnostic dia-
logue. To scale AMIE across a multitude of specialties and scenarios, 
we developed a self-play-based simulated diagnostic dialogue environ-
ment with automated feedback mechanisms to enrich and accelerate 
its learning process. We also introduced an inference time chain-of- 
reasoning strategy to improve AMIE’s diagnostic accuracy and conver-
sation quality. Then we developed a pilot evaluation rubric to assess 
the history-taking, diagnostic reasoning, communication skills and 
empathy of diagnostic conversational medical AI, encompassing both 
clinician-centred and patient-centred metrics. Next we designed and 
conducted a blinded, remote objective structured clinical examination 
(OSCE) study (Fig. 2) using 159 case scenarios from clinical providers 
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Fig. 1 | Overview of contributions. AMIE is a conversational medical  
AI optimized for diagnostic dialogue. It is instruction fine-tuned with a 
combination of real-world and simulated medical dialogues, alongside a diverse 
set of medical reasoning, question-answering (QA) and summarization datasets. 
Notably, we designed a self-play-based simulated dialogue environment with 
automated feedback mechanisms to scale AMIE’s capabilities across various 
medical contexts and specialties. Specifically, this iterative self-improvement 
process consisted of two self-play loops: (1) an ‘inner’ self-play loop, where  
AMIE leveraged in-context critic feedback to refine its behaviour on simulated 
conversations with an AI patient agent; and (2) an ‘outer’ self-play loop where 

the set of refined simulated dialogues were incorporated into subsequent  
fine-tuning iterations. During online inference, AMIE used a chain-of-reasoning 
strategy to progressively refine its response, conditioned on the current 
conversation, to arrive at an accurate and grounded reply to the patient in  
each dialogue turn. We designed and conducted a blinded remote OSCE with 
validated patient-actors interacting with AMIE or PCPs by means of a text chat 
interface. Across multiple axes, corresponding to both specialist physician  
(30 out of 32) and patient-actor (25 out of 26) perspectives, AMIE was rated as 
superior to PCPs while being non-inferior on the rest.
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in Canada, the United Kingdom and India, enabling the randomized 
and counterbalanced comparison of AMIE to primary care physicians 
(PCPs) when performing consultations with validated patient-actors. 
AMIE exhibited superior diagnostic accuracy compared to the PCPs, as 
assessed by various measures (for example, top-1 and top-3 accuracy of 
the differential diagnosis (DDx) list). Across 30 out of 32 evaluation axes 
from the specialist physician perspective and 25 out of 26 evaluation 
axes from the patient-actor perspective, AMIE was rated superior to 
PCPs while being non-inferior on the rest. Finally we performed a range 
of ablations to further understand and characterize the capabilities of 
AMIE, highlighting important limitations, and have proposed key next 
steps for the real-world clinical translation of AMIE.

Our research has important limitations, most notably that we utilized 
a text-chat interface, which, although enabling potentially large-scale 
interaction between patients and LLMs specialized for diagnostic dia-
logue, was unfamiliar to the PCPs for remote consultation. Thus, our 
study should not be regarded as representative of usual practice in 
(tele)medicine.

Differential diagnosis accuracy
AMIE has higher differential diagnosis accuracy than PCPs
AMIE’s diagnostic accuracy was assessed as higher than that of the PCPs. 
Figure 3 shows the top-k accuracy for AMIE and the PCPs, considering 
matches with the ground-truth diagnosis (Fig. 3a) and matches with 
any item on the accepted differential (Fig. 3b). AMIE showed signifi-
cantly higher top-k accuracy than that of the PCPs across all values of k 
(P < 0.05). Note that, unlike AMIE, the PCPs did not always provide ten 
diagnoses in their DDxs (min = 3, mean = 5.36). Additionally, we per-
formed a comparison of DDx accuracy between AMIE and the PCPs by 
varying the criteria for determining a match (that is, requiring an exact 
match versus just a highly relevant diagnosis). The results depicted in 
Supplementary Fig. 2 further substantiate AMIE’s superior DDx per-
formance across various matching criteria.

Non-disease-state and disease-state accuracy. Ten of the sce-
narios performed by AMIE and the PCPs were designed to primarily 
describe patients with no new concerning diagnosis (for example, a 
ground-truth diagnosis of resolved constipation, or the recurrence of a 
prior-known disease state of gastroesophageal-reflux-disease-induced 
chest pain). These were two scenarios each from the cardiovascular, 
gastroenterology, internal medicine, neurology and respiratory spe-
cialties. Here we plotted the top-k DDx accuracy, as rated by the major-
ity vote of three specialists for these non-disease-state cases. Although 
our results are not statistically significant, as they only consist of ten 
scenarios, AMIE appears to maintain the same trend of better perfor-
mance on these mostly negative scenarios (Extended Data Fig. 2). AMIE 
has superior DDx accuracy on the set of 149 primarily positive disease 
state scenarios (in which only three scenarios had a ground-truth of a 
non-disease state).

Accuracy by specialty. Extended Data Fig. 3 illustrates the DDx accu-
racy achieved by AMIE and the PCPs across the six medical specialties 
covered by the scenarios in our study. We observed that AMIE’s perfor-
mance matched or surpassed PCP performance for all specialties except 
for obstetrics and gynaecology/urology, with the most pronounced im-
provements being in the respiratory and internal medicine specialties.

Accuracy by location. We observed that both AMIE and the PCPs had 
higher diagnostic accuracy in consultations performed in the Canada 
OSCE lab compared to those enacted in the India OSCE lab. However, the 
differences were not statistically significant and, in a subset of 40 scenar-
ios enacted in both the Canada and India OSCE labs, the performances 
of both AMIE and the PCPs were equivalent (Extended Data Fig. 4).

Efficiency in acquiring information
Auto-evaluation accuracy. We reproduced the DDx accuracy analysis 
with our model-based DDx auto-evaluator using the same procedure 
as in Fig. 3. The overall performance trends obtained through the 
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auto-evaluator align well with specialist assessments despite marginal 
differences in the computed accuracy values, as shown in Extended Data 
Fig. 5a,b. Additionally, we present a fully-simulated ablation testing 
different patient behaviours (Supplementary Fig. 3), which showed 
that AMIE was robust to many different patient personalities, although 
it had reduced DDx performance when interviewing patients with low 
English literacy.

Isolating the source of performance gains. To investigate whether 
AMIE’s superior DDx performance observed in Fig. 3 stemmed from 
improved information acquisition or from better diagnostic reasoning 
capability, we compared AMIE’s diagnoses based on its own consulta-
tions with AMIE’s diagnoses generated from the corresponding PCP 
consultations, using the DDx auto-evaluator. The results depicted in 
Extended Data Fig. 5c,d revealed markedly similar DDx performance,  
indicating that the diagnostic performance remained consistent 
regardless of whether AMIE processed information from its own dia
logue or from the PCP’s conversation. Both methods significantly 
outperformed the DDxs produced by the PCPs. These results suggest 
that AMIE was approximately equivalent to the PCPs at information 
acquisition, but better than the PCPs at interpreting that information 
to produce an accurate or complete DDx.

Efficiency of information acquisition. Although AMIE displayed 
greater verbosity compared to the PCPs, in terms of total number of 
words generated in their responses during the consultation, the num-
ber of conversational turns and the number of words elicited from the 
patient-actors were similar across both OSCE agents, as illustrated in 
Extended Data Fig. 6a–c. This suggests that both AMIE and the PCPs 
acquired a similar amount of information from the patients during 
the encounter. To investigate how efficient AMIE or the PCPs were at 
gathering sufficient information to formulate a correct diagnosis, we 
truncated the conversations at various turn counts and used AMIE to 
generate DDxs based on these partial conversations. The results in 
Extended Data Fig. 6d,e illustrate that both AMIE and the PCPs were 
able to acquire the information necessary for formulating an accurate 
differential in the early stages (first ten turns) of the conversation. With 
comparable performance at all conversation lengths, neither AMIE nor 
the PCPs seemed to have a significant advantage in the speed, efficiency 
or diagnostic utility of information acquisition.

Conversation quality
AMIE surpasses PCPs in dialogue quality
Conversation quality was assessed using patient-actor ratings, special-
ist ratings and outputs from auto-evaluation. Supplementary Table 5 
shows two example consultations with the same simulated patient 
from AMIE and a PCP.

Patient-actor ratings. Figure 4 presents the various conversation quali-
ties the patient-actors assessed following their consultations with the 
OSCE agents. Overall, AMIE’s consultations were rated significantly 
better (P < 0.05) by the patient-actors than those with the PCPs across 
25 of 26 axes. No significant differences in ratings were detected for one 
of the patient-centred communication best practice (PCCBP) axes19, 
‘Acknowledging mistakes’ (N = 46). For this criterion, the number of 
exclusions was substantially higher because the question applied only 
when mistakes were made by the OSCE agent and were pointed out in 
the conversation.

Specialist physician ratings. Specialist physicians evaluated both the 
conversational quality as well as the responses to the post-questionnaire 
for scenarios within their domain expertise (Fig. 5). Again, AMIE’s res
ponses were rated significantly better by the specialists than those 
from the PCPs on 30 out of 32 evaluation axes, with the specialists 
preferring AMIE’s consultations, diagnoses and management plans 
over those from the PCPs. For this set of evaluations, the differences 
in specialist ratings between AMIE and the PCPs were statistically sig-
nificant (P < 0.05). See Supplementary Information section 7 for the 
inter-rater reliability between the three specialist raters per scenario. 
No significant differences in ratings were detected for two of the axes 
in the Diagnosis and management rubric—namely, ‘Escalation rec-
ommendation appropriate’ and ‘Confabulation absent’—despite no 
exclusions (N = 159).

Simulated dialogue conversation quality
We leveraged a model-based self-chain-of-thought auto-evaluation 
strategy (Supplementary Table 2) to rate conversations on four evalu-
ation axes from the Practical Assessment of Clinical Examination Skills 
(PACES) rubric20, and validated that these auto-evaluation ratings were 
accurate and well aligned with the specialist ratings (Supplementary 
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Fig. 1b). Comparing the simulated dialogues generated before and 
after the self-play procedure, we found that the inner self-play loop 
improved simulated dialogue quality on these axes, as indicated in 
Supplementary Fig. 1c.

Discussion
In this study, we introduced AMIE, an LLM-based AI system optimized 
for clinical dialogue with diagnostic reasoning capabilities. We com-
pared AMIE consultations to those performed by PCPs using a rand-
omized, double-blind crossover study with human simulated patients 
in the style of an OSCE. Notably, our study was not designed to be rep-
resentative of clinical conventions either for traditional OSCE evalu-
ations, for remote- or telemedical consultation practices or for the 
ways clinicians usually use text and chat messaging to communicate 
with patients. Our evaluation instead mirrored the most common way 
by which people interact with LLMs today, leveraging a potentially 
scalable and familiar mechanism for AI systems to engage in remote 
diagnostic dialogue. In this setting, we observed that AMIE, an AI sys-
tem optimized specifically for the task, outperformed the PCPs on 
simulated diagnostic conversations when evaluated along multiple 
clinically meaningful axes of consultation quality.

Diagnostic performance
The DDxs provided by AMIE were more accurate and complete than 
those provided by the board-certified PCPs when both were evaluated 
by specialist physicians. Previous research has shown that AI systems 
may match or exceed human diagnostic performance in specific, nar-
row tasks21,22 in retrospective evaluation. However, these situations 

typically involved both the AI and physicians interpreting the same 
fixed input (for example, identifying the presence of a specific find-
ing in a medical image). Our study was significantly more challenging 
because it required the AI system to actively acquire relevant informa-
tion through conversation, rather than relying on clinical information 
collated by human efforts23. Therefore the system’s downstream DDxs 
depended on not only its diagnostic inference capability, but also the 
quality of information gathered under uncertainty through natural 
conversation and building rapport.

Our results suggested that AMIE was as adept as the PCPs in eliciting 
pertinent information during the simulated consultations, and was 
more accurate than the PCPs in formulating a complete DDx if given the 
same amount of acquired information. This finding corroborates other 
work that LLMs may be able to produce more complete DDxs given the 
same clinical information as physicians in challenging cases22. Although 
not explored in this study, the assistive performance of AMIE therefore 
represents an interesting and important avenue for future research, 
particularly given the real-world importance of expert oversight for 
AI systems in safety-critical settings, such as medicine.

Our study utilized a wide variety of simulated patients, comprising 
actors trained in both Canada and India, and scenarios across a range 
of specialties. This allowed us to explore how performance varied along 
multiple axes—by specialty, and by the locations in which the scenario 
was derived and enacted. While we observed that both the PCPs and 
AMIE performed worse in gastroenterology and internal medicine 
scenarios than with other specialties (Extended Data Fig. 3), the study 
was not powered or designed to compare performance between dif-
ferent specialty topics and locations, and we cannot exclude that the 
scenarios in some specialties might have been harder than others.
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159 simulated patients. The P values were determined using two-sided Wilcoxon 
signed-rank tests with FDR correction. Cases where either AMIE or the PCP 
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Conversational performance
The patient-actors and specialist raters both evaluated AMIE’s perfor-
mance to be higher than that of the PCPs on metrics related to empathy 
and communication skills. These axes comprised a majority of the 
dimensions that were evaluated. This general finding is consistent 
with a prior study, where LLM responses were found to be more empa-
thetic than the responses from clinicians to health questions posted 
on Reddit24. However, the findings in that study cannot be generalized 
directly to our setting due to the differences in study design. Specifi-
cally, prior work has not involved a direct, randomized comparison of 
physicians and AI systems in a prospective simulation of multi-turn 
dialogue with the same patient. In both settings, the lack of voice-based 
and non-verbal visual communication may have been an unfair disad-
vantage to the clinicians.

The text-based chat interface used in this study introduced both advan-
tages and disadvantages. People today most commonly engage with 
LLMs through synchronous text-chat interfaces25, and patients often 
use patient portals to send messages to their providers. We therefore 

chose this mode of interaction as a representative interface for LLMs to 
perform multi-turn conversation, adapting the virtual OSCE framework 
accordingly. While this allowed a fair comparison of diagnostic dialogue 
between the LLMs and the clinicians when both were restricted to a syn-
chronous text chat, it is important to acknowledge that our experiments 
did not emulate the expected quality of diagnostic dialogue in real clini-
cal practice (including telemedicine). Physicians may be more used to 
history-taking and diagnostic dialogue by telephone or video consulta-
tion than synchronous text-chat communication26. Instead, text is more 
commonly used by clinicians to communicate with patients for episodic 
or asynchronous needs, such as prescription refills or communication 
about specific test results27. Physicians may thus be more familiar with 
text/SMS or email rather than the synchronous text-chat medium we 
employed in this study. In both text/SMS and email, the conventions and 
expectations for communicating naturally and with empathic style might 
be different28. It is possible that the PCPs in our study had not yet become 
accustomed to the setting, and may have performed differently if sub-
jected to a specific training programme (similar in spirit to the training 
process for AMIE). Clinicians participating in the study undertook two 
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Fig. 5 | Specialist physician ratings. Conversation and reasoning qualities, as 
assessed by specialist physicians. For illustration purposes, all responses from 
the five-point rating scales were mapped to a generic five-point scale ranging 
from ‘Very favourable’ to ‘Very unfavourable’. The only four-point scale (DDx 
comprehensiveness) was mapped to the same scale, ignoring the ‘Neither 
favourable nor unfavourable’ option. For Yes/No questions, a (positive) ‘Yes’ 
response was mapped to the same colour as ‘Favourable’ and a (negative) ‘No’ 
response to the same colour as ‘Unfavourable’. The rating scales were adapted 

from PACES, a narrative review about PCCBP and other sources. Details on 
question-wording and response options are provided in Extended Data 
Tables 1–3. The evaluation involved 159 simulated patients, with the ratings 
from three distinct specialist physician raters for each case being aggregated 
using the median. The P values were determined using two-sided Wilcoxon 
signed-rank tests with FDR correction. Cases where either AMIE or the PCP 
received ‘Cannot rate/Does not apply’ were excluded from the test.
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preparatory pilot sessions of consultations with our synchronous text 
interface before the evaluation began, but this was not a formal training 
programme, nor was it designed to optimize the clinicians’ performance. 
Future research could explore this question more thoroughly, includ-
ing monitoring for the impact of a learning curve or exploring whether 
performance varies according to the extent to which participating cli-
nicians or simulated patients are familiar with telemedicine. Note that 
the conversations in our study were time-limited to follow typical OSCE 
conventions. While real-world patient–physician consultations often 
also take place under time constraints, the specific time limit imposed 
in our study may not be reflective of real-world scenarios.

Additionally, our findings regarding empathic communication could 
also be partially attributed to the fact that the AMIE responses were 
significantly longer than the clinician responses (Extended Data Fig. 6), 
and presented with greater structure. This could potentially suggest to 
an observer that more time was spent preparing the response, analo-
gous to known findings that patient satisfaction increases with time 
spent with their physicians29.

Collectively, our findings suggest many avenues for further research 
that might leverage human–AI complementarity30, combining clini-
cians’ skills in the analysis of verbal and non-verbal cues with the 
potential strengths of LLMs to suggest more enriched conversational 
responses, including empathic statements, structure, eloquence or 
more complete DDxs.

Simulated dialogue
The use of simulated data allowed us to quickly scale the training to 
a broad set of conditions and patient contexts, while the injection 
of knowledge from search encouraged these dialogues to remain 
grounded and realistic. Although the simulated patients encompassed 
a wide range of conditions, they failed to capture the full range of poten-
tial patient backgrounds, personalities and motivations. Indeed, the 
simulated experiments shown in Supplementary Fig. 3 suggested that, 
while AMIE appears robust to certain variations in patient character-
istics and behaviour, it has significant difficulty with some types of 
patients, such as those with low English literacy. Through the inner 
self-play procedure, we were able to iteratively improve the simu-
lated dialogue we generated and used in fine-tuning. However, these 
improvements were limited by our ability to articulate what made good 
dialogue in the critic instructions, the critic’s ability to produce effective 
feedback and AMIE’s ability to adapt to such feedback. For example, in 
the simulated environment we imposed that AMIE reaches a proposed 
differential and testing/treatment plan for the patient, but such an end-
point may be unrealistic for some conditions, especially in the virtual 
chat-based setting. This limitation also applies in the real-world setting.

Additionally, the task of producing reward signals for the quality of 
medical diagnostic conversations is more challenging than evaluat-
ing outcomes in rule-based constrained environments where success 
is well-defined (for example, winning or losing a game of Go31). Our 
process for generating synthetic vignettes was designed with this con-
sideration in mind. Because we knew the ground-truth condition for 
each vignette and the corresponding simulated dialogue(s) rollout, we 
were able to automatically assess the correctness of AMIE’s DDx predic-
tions as a proxy reward signal. This reward signal was used to filter out 
‘unsuccessful’ simulated dialogues, such as those for which AMIE failed 
to produce an accurate DDx prediction during this self-play process. 
Beyond DDx accuracy, the self-play critic agent also assessed other 
qualities, including the level of empathy, professionalism and coher-
ence conveyed by the doctor agent for each simulated dialogue. While 
these latter constructs are more subjective compared to diagnostic 
accuracy, they served as domain-specific heuristics imposed by clini-
cal experts from our research team to help steer AMIE’s development 
towards alignment with established clinical values. We also note that, 
in our preliminary analysis described in this work, our auto-evaluation 
framework for assessing the conversations along such rubrics was 

found to be in good alignment with human ratings and comparable 
to the inter-specialist agreement on these criteria.

Note that the majority of scenarios in our evaluation set assumed an 
underlying disease state, while only a small subset assumed the absence 
of disease. This is an important limitation of this work because it does not 
reflect the population-level epidemiological realities of primary care, 
where the majority of work in assessing patients involves ruling out dis-
ease, rather than ruling it in. We encourage future work to explore evalu-
ation with various distributions of disease versus non-disease states.

Therefore, even within the distribution of diseases and specialties  
we addressed, our findings should be interpreted with humility and cau-
tion. There is a need for further research to examine varied presentations 
of the same diseases, alongside an exploration of alternative approaches 
to evaluating history-taking and clinical dialogue in situations of differ-
ent patient needs, preferences, behaviours and circumstances.

Fairness and bias
The evaluation protocol presented in this paper was limited in terms 
of its ability to capture potential issues related to fairness and bias, 
which remains an important open question that we will aim to address 
in subsequent system evaluations. Recent advances in the development 
of comprehensive frameworks for bias detection in LLMs32 present a 
promising starting point for establishing such an approach. It should 
be noted that medical diagnostic dialogue is a particularly challenging 
use case, due to the complexity of the medical domain, the interactive 
information-gathering nature of the dialogue and the outcome-driven 
setting, with the potential of associated harms in cases of incorrect 
diagnosis or incorrect medical advice. Nevertheless, disentangling 
these issues is an important further research area if LLMs in the domain 
are to overcome, rather than propagate, inequities in healthcare. For 
example, previous studies have found that physicians approach com-
munication with their patients differently, on average, depending on 
the patients’ race, resulting in Black patients receiving communication 
that was less patient-centred and had a lower positive affect33. Other 
studies have found differences in physicians’ communication styles and 
conversation length based on gender34 and on patients’ level of health 
literacy35. Effective intercultural communication skills are essential36. 
There is therefore a non-negligible risk that such historical conversa-
tional biases may be replicated or amplified in an AI dialogue system, 
but at the same time, there is also an opportunity to work towards 
designing conversational systems that can be more inclusive, and more 
personalized to the individual patient’s needs.

To help inform the development of the necessary fairness, bias and 
equity frameworks, it was important to employ a participatory approach 
to solicit representative views across a wide range of patient demo-
graphics, as well as clinical and health equity domain experts. Such 
evaluation frameworks should be complemented by extensive model 
red-teaming and an adversarial approach to identifying any remaining 
gaps and failure modes. Recent advances in red-teaming LLMs could be 
useful in this scenario37, where human raters or other AI systems (that 
is, the red team) simulate the role of an adversary to identify vulner-
abilities and security gaps in these LLMs. These practices should not 
only inform the evaluation of the final model, but also its development 
and iterative refinement. Model development should follow the estab-
lished data and model reporting practices and provide transparency 
into the training data and the associated decision processes38–40. The 
dialogue research dataset contributing to the AMIE training data in our 
study was de-identified, reducing the availability of socioeconomic 
factors, patient demographics and information about clinical settings 
and locations. To mitigate the risk that our synthetic vignettes would 
skew towards certain demographic groups, we leveraged web search 
to retrieve a range of demographics and associated symptoms relevant 
to each condition. We used these as input to the prompt template for 
vignette generation, instructing the model to produce multiple dif-
ferent vignettes given this range of inputs. While this mechanism was 
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designed with the intent of mitigating risks of bias amplification, a 
comprehensive evaluation of conversational diagnostic models, such as 
AMIE, for equity, fairness and bias is an important scope for future work.

Further work is also needed to ensure the robustness of medical LLMs 
in multilingual settings41, and particularly their performance in minority 
languages42. The great variety of cultures43, languages, localities, identi-
ties and localized medical needs makes the task of generating a priori 
static yet comprehensive fairness benchmarks practically infeasible. 
The measurement and mitigation of bias must move beyond the tradi-
tional narrow focus on specific axes that fails to scale globally44. With 
LLM-based evaluators, a potential solution is presented for preliminary 
assessments in languages where there are no systematic benchmarks, 
although prior studies have found these auto-evaluation frameworks 
to be biased, underscoring the need for calibrating them on native 
speaker evaluations, and using them with caution45.

Deployment
This study demonstrates the potential of LLMs for future use in health-
care in the context of diagnostic dialogue. Transitioning from an LLM 
research prototype that has been evaluated in this study to a safe and 
robust tool that can be used by healthcare providers, administrators 
and people will require significant additional research to ensure the 
safety, reliability, efficacy and privacy of the technology. Careful con-
sideration will need to be given to the ethical deployment of this tech-
nology, including rigorous quality assessment across different clinical 
settings and research into reliable uncertainty estimation methods46 
that would allow for deferral to human clinical experts when needed. 
These and other guardrails are needed to mitigate the potential overreli-
ance on LLM technologies, with other specific measures for attention 
to ethical and regulatory requirements particular to future use cases 
and the presence of qualified physicians in the loop to safeguard any 
model outputs. Additional research will also be needed to assess the 
extent to which biases and security vulnerabilities might arise, either 
from base models or the circumstances of use in deployment, as we 
have highlighted in our prior work12. Given the continuous evolution of 
clinical knowledge, it will also be important to develop ways for LLMs 
to utilize up-to-date clinical information47.

Conclusion
The utility of medical AI systems could be greatly improved if they are 
better able to interact conversationally, anchoring on large-scale medi-
cal knowledge, while communicating with appropriate levels of empa-
thy and trust. This work demonstrates the great potential capabilities of 
LLM-based AI systems for settings involving clinical history-taking and 
diagnostic dialogue. The performance of AMIE in simulated consulta-
tions represents a milestone for the field, given it was assessed along 
an evaluation framework that considered multiple clinically relevant 
axes for conversational diagnostic medical AI. However, the results 
should be interpreted with appropriate caution. Translating from this 
limited scope of experimental simulated history-taking and diagnostic 
dialogue towards real-world tools for people and those who provide 
care for them requires a substantial amount of additional research and 
development to ensure the safety, reliability, fairness, efficacy and 
privacy of the technology. If successful, we believe AI systems, such 
as AMIE, can be at the core of next-generation-learning health systems 
that help scale world-class healthcare to everyone.
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Methods

Real-world datasets for AMIE
AMIE was developed using a diverse suite of real-world datasets, includ-
ing multiple-choice medical question-answering, expert-curated 
long-form medical reasoning, electronic health record (EHR) note 
summaries and large-scale transcribed medical conversation inter-
actions. As described in detail below, in addition to dialogue genera-
tion tasks, the training task mixture for AMIE consisted of medical 
question-answering, reasoning and summarization tasks.

Medical reasoning. We used the MedQA (multiple-choice) dataset, 
consisting of US Medical Licensing Examination multiple-choice-style 
open-domain questions with four or five possible answers48. The train-
ing set consisted of 11,450 questions and the test set had 1,273 questions. 
We also curated 191 MedQA questions from the training set where clini-
cal experts had crafted step-by-step reasoning leading to the correct 
answer13.

Long-form medical question-answering. The dataset used here con-
sisted of expert-crafted long-form responses to 64 questions from 
HealthSearchQA, LiveQA and Medication QA in MultiMedQA12.

Medical summarization. A dataset consisting of 65 clinician-written 
summaries of medical notes from MIMIC-III, a large, publicly avail-
able database containing the medical records of intensive care unit 
patients49, was used as additional training data for AMIE. MIMIC-III 
contains approximately two million notes spanning 13 types, including 
cardiology, respiratory, radiology, physician, general, discharge, case 
management, consult, nursing, pharmacy, nutrition, rehabilitation 
and social work. Five notes from each category were selected, with a 
minimum total length of 400 tokens and at least one nursing note per 
patient. Clinicians were instructed to write abstractive summaries of 
individual medical notes, capturing key information while also per-
mitting the inclusion of new informative and clarifying phrases and 
sentences not present in the original note.

Real-world dialogue. Here we used a de-identified dataset licensed 
from a dialogue research organization, comprising 98,919 audio tran-
scripts of medical conversations during in-person clinical visits from 
over 1,000 clinicians over a ten-year period in the United States50.  
It covered 51 medical specialties (primary care, rheumatology, haema-
tology, oncology, internal medicine and psychiatry, among others) and 
168 medical conditions and visit reasons (type 2 diabetes, rheumatoid 
arthritis, asthma and depression being among the common condi-
tions). Audio transcripts contained utterances from different speaker 
roles, such as doctors, patients and nurses. On average, a conversation 
had 149.8 turns (P0.25 = 75.0, P0.75 = 196.0). For each conversation, the 
metadata contained information about patient demographics, reason 
for the visit (follow-up for pre-existing condition, acute needs, annual 
exam and more), and diagnosis type (new, existing or other unrelated). 
Refer to ref. 50 for more details.

For this study, we selected dialogues involving only doctors and 
patients, but not other roles, such as nurses. During preprocess-
ing, we removed paraverbal annotations, such as ‘[LAUGHING]’ and 
‘[INAUDIBLE]’, from the transcripts. We then divided the dataset into 
training (90%) and validation (10%) sets using stratified sampling 
based on condition categories and reasons for visits, resulting in  
89,027 conversations for training and 9,892 for validation.

Simulated learning through self-play
While passively collecting and transcribing real-world dialogues from 
in-person clinical visits is feasible, two substantial challenges limit its 
effectiveness in training LLMs for medical conversations: (1) existing 
real-world data often fail to capture the vast range of medical conditions 

and scenarios, hindering its scalability and comprehensiveness; and  
(2) the data derived from real-world dialogue transcripts tend to be noisy, 
containing ambiguous language (including slang, jargon and sarcasm), 
interruptions, ungrammatical utterances and implicit references. This, in 
turn, may have limited AMIE’s knowledge, capabilities and applicability.

To address these limitations, we designed a self-play-based simulated 
learning environment for diagnostic medical dialogues in a virtual care 
setting, enabling us to scale AMIE’s knowledge and capabilities across a 
multitude of medical conditions and contexts. We used this environment 
to iteratively fine-tune AMIE with an evolving set of simulated dialogues 
in addition to the static corpus of medical question-answering, reason-
ing, summarization and real-world dialogue data described above.

This process consisted of two self-play loops:
•	 An inner self-play loop where AMIE leveraged in-context critic feed-

back to refine its behaviour on simulated conversations with an AI 
patient agent.

•	 An outer self-play loop where the set of refined simulated dialogues 
were incorporated into subsequent fine-tuning iterations. The result-
ing new version of AMIE could then participate in the inner loop again, 
creating a continuous learning cycle.

At each iteration of fine-tuning, we produced 11,686 dialogues, stem-
ming from 5,230 different medical conditions. The conditions were 
selected from three datasets:
•	 The Health QA dataset12, which contained 613 common medical  

conditions.
•	 The MalaCards Human Disease Database (https://github.com/ 

Shivanshu-Gupta/web-scrapers/blob/master/medical_ner/malacards- 
diseases.json), which contained 18,455 less-common disease condi-
tions.

•	 The MedicineNet Diseases & Conditions Index (https://github.
com/Shivanshu-Gupta/web-scrapers/blob/master/medical_ner/ 
medicinenet-diseases.json), which contained 4,617 less-common 
conditions.

At each self-play iteration, four conversations were generated from 
each of the 613 common conditions, while two conversations were 
generated from each of the 4,617 less-common conditions randomly 
chosen from MedicineNet and MalaCards. The average simulated dia-
logue conversation length was 21.28 turns (P0.25 = 19.0, P0.75 = 25.0).

Simulated dialogues through self-play. To produce high-quality 
simulated dialogues at scale, we developed a new multi-agent frame-
work that comprised three key components:
•	 A vignette generator: AMIE leverages web searches to craft unique 

patient vignettes given a specific medical condition.
•	 A simulated dialogue generator: three LLM agents play the roles of 

patient agent, doctor agent and moderator, engaging in a turn-by-turn 
dialogue simulating realistic diagnostic interactions.

•	 A self-play critic: a fourth LLM agent acts as a critic to give feedback 
to the doctor agent for self-improvement. Notably, AMIE acted as all 
agents in this framework.

The prompts for each of these steps are listed in Supplementary 
Table 3. The vignette generator aimed to create varied and realistic 
patient scenarios at scale, which could be subsequently used as context 
for generating simulated doctor–patient dialogues, thereby allowing 
AMIE to undergo a training process emulating exposure to a greater 
number of conditions and patient backgrounds. The patient vignette 
(scenario) included essential background information, such as patient 
demographics, symptoms, past medical history, past surgical history, 
past social history and patient questions, as well as an associated diag-
nosis and management plan.

For a given condition, patient vignettes were constructed using 
the following process. First, we retrieved 60 passages (20 each) on 
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the range of demographics, symptoms and management plans asso-
ciated with the condition from using an internet search engine. To 
ensure these passages were relevant to the given condition, we used the 
general-purpose LLM, PaLM 2 (ref. 10), to filter these retrieved passages, 
removing any passages deemed unrelated to the given condition. We 
then prompted AMIE to generate plausible patient vignettes aligned 
with the demographics, symptoms and management plans retrieved 
from the filtered passages, by providing a one-shot exemplar to enforce 
a particular vignette format.

Given a patient vignette detailing a specific medical condition, the 
simulated dialogue generator was designed to simulate a realistic dia-
logue between a patient and a doctor in an online chat setting where 
in-person physical examination may not be feasible.

Three specific LLM agents (patient agent, doctor agent and modera-
tor), each played by AMIE, were tasked with communicating among 
each other to generate the simulated dialogues. Each agent had dis-
tinct instructions. The patient agent embodied the individual expe-
riencing the medical condition outlined in the vignette. Their role 
involved truthfully responding to the doctor agent’s inquiries, as well 
as raising any additional questions or concerns they may have had. 
The doctor agent played the role of an empathetic clinician seeking 
to comprehend the patient’s medical history within the online chat 
environment51. Their objective was to formulate questions that could 
effectively reveal the patient’s symptoms and background, leading to 
an accurate diagnosis and an effective treatment plan. The moderator 
continually assessed the ongoing dialogue between the patient agent 
and doctor agent, determining when the conversation had reached 
a natural conclusion.

The turn-by-turn dialogue simulation started with the doctor agent 
initiating the conversation: “Doctor: So, how can I help you today?”. 
Following this, the patient agent responded, and their answer was 
incorporated into the ongoing dialogue history. Subsequently, the 
doctor agent formulated a response based on the updated dialogue 
history. This response was then appended to the conversation his-
tory. The conversation progressed until the moderator detected the 
dialogue had reached a natural conclusion, when the doctor agent 
had provided a DDx, treatment plan, and adequately addressed 
any remaining patient agent questions, or if either agent initiated a  
farewell.

To ensure high-quality dialogues, we implemented a tailored self-
play3,52 framework specifically for the self-improvement of diagnostic 
conversations. This framework introduced a fourth LLM agent to act 
as a ‘critic’, which was also played by AMIE, and that was aware of the 
ground-truth diagnosis to provide in-context feedback to the doctor 
agent and enhance its performance in subsequent conversations.

Following the critic’s feedback, the doctor agent incorporated the 
suggestions to improve its responses in subsequent rounds of dialogue 
with the same patient agent from scratch. Notably, the doctor agent 
retained access to its previous dialogue history in each new round. 
This self-improvement process was repeated twice to generate the 
dialogues used for each iteration of fine-tuning. See Supplementary 
Table 4 as an example of this self-critique process.

We noted that the simulated dialogues from self-play had signifi-
cantly fewer conversational turns than those from the real-world data 
described in the previous section. This difference was expected, given 
that our self-play mechanism was designed—through instructions to the 
doctor and moderator agents—to simulate text-based conversations. 
By contrast, real-world dialogue data was transcribed from in-person 
encounters. There are fundamental differences in communication 
styles between text-based and face-to-face conversations. For example, 
in-person encounters may afford a higher communication bandwidth, 
including a higher total word count and more ‘back and forth’ (that is, 
a greater number of conversational turns) between the physician and 
the patient. AMIE, by contrast, was designed for focused information 
gathering by means of a text-chat interface.

Instruction fine-tuning
AMIE, built upon the base LLM PaLM 2 (ref. 10), was instruction fine- 
tuned to enhance its capabilities for medical dialogue and reasoning. 
We refer the reader to the PaLM 2 technical report for more details on 
the base LLM architecture. Fine-tuning examples were crafted from 
the evolving simulated dialogue dataset generated by our four-agent 
procedure, as well as the static datasets. For each task, we designed 
task-specific instructions to instruct AMIE on what task it would be 
performing. For dialogue, this was assuming either the patient or doctor 
role in the conversation, while for the question-answering and sum-
marization datasets, AMIE was instead instructed to answer medical 
questions or summarize EHR notes. The first round of fine-tuning from 
the base LLM only used the static datasets, while subsequent rounds 
of fine-tuning leveraged the simulated dialogues generated through 
the self-play inner loop.

For dialogue generation tasks, AMIE was instructed to assume either 
the doctor or patient role and, given the dialogue up to a certain turn, to 
predict the next conversational turn. When playing the patient agent, 
AMIE’s instruction was to reply to the doctor agent’s questions about 
their symptoms, drawing upon information provided in patient sce-
narios. These scenarios included patient vignettes for simulated dia-
logues or metadata, such as demographics, visit reason and diagnosis 
type, for the real-world dialogue dataset. For each fine-tuning example 
in the patient role, the corresponding patient scenario was added to 
AMIE’s context. In the doctor agent role, AMIE was instructed to act as 
an empathetic clinician, interviewing patients about their medical his-
tory and symptoms to ultimately arrive at an accurate diagnosis. From 
each dialogue, we sampled, on average, three turns for each doctor and 
patient role as the target turns to predict based on the conversation 
leading up to that target turn. Target turns were randomly sampled from 
all turns in the dialogue that had a minimum length of 30 characters.

Similarly, for the EHR note summarization task, AMIE was provided 
with a clinical note and prompted to generate a summary of the note. 
Medical reasoning/QA and long-form response generation tasks fol-
lowed the same set-up as in ref. 13. Notably, all tasks except dialogue 
generation and long-form response generation incorporated few-shot 
(1–5) exemplars in addition to task-specific instructions for additional 
context.

Chain-of-reasoning for online inference
To address the core challenge in diagnostic dialogue—effectively, acquir-
ing information under uncertainty to enhance diagnostic accuracy and 
confidence, while maintaining positive rapport with the patient—AMIE 
employed a chain-of-reasoning strategy before generating a response in 
each dialogue turn. Here ‘chain-of-reasoning’ refers to a series of sequen-
tial model calls, each dependent on the outputs of prior steps. Specifi-
cally, we used a three-step reasoning process, described as follows:
•	 Analysing patient information. Given the current conversation his-

tory, AMIE was instructed to: (1) summarize the positive and negative 
symptoms of the patient as well as any relevant medical/family/social 
history and demographic information; (2) produce a current DDx; 
(3) note missing information needed for a more accurate diagnosis; 
and (4) assess confidence in the current differential and highlight 
its urgency.

•	 Formulating response and action. Building upon the conversation 
history and the output of step 1, AMIE: (1) generated a response to the 
patient’s last message and formulated further questions to acquire 
missing information and refine the DDx; and (2) if necessary, rec-
ommended immediate action, such as an emergency room visit. If 
confident in the diagnosis, based on the available information, AMIE 
presented the differential.

•	 Refining the response. AMIE revised its previous output to meet spe-
cific criteria based on the conversation history and outputs from 
earlier steps. The criteria were primarily related to factuality and 
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formatting of the response (for example, avoid factual inaccuracies 
on patient facts and unnecessary repetition, show empathy, and dis-
play in a clear format).

This chain-of-reasoning strategy enabled AMIE to progressively 
refine its response conditioned on the current conversation to arrive 
at an informed and grounded reply.

Evaluation
Prior works developing models for clinical dialogue have focused on 
metrics, such as the accuracy of note-to-dialogue or dialogue-to-note 
generations53,54, or natural language generation metrics, such as BLEU or 
ROUGE scores that fail to capture the clinical quality of a consultation55,56.

In contrast to these prior works, we sought to anchor our human 
evaluation in criteria more commonly used for evaluating the quality of 
physicians’ expertise in history-taking, including their communication 
skills in consultation. Additionally, we aimed to evaluate conversation 
quality from the perspective of both the lay participant (the participat-
ing patient-actor) and a non-participating professional observer (a phy-
sician who was not directly involved in the consultation). We surveyed 
the literature and interviewed clinicians working as OSCE examiners 
in Canada and India to identify a minimum set of peer-reviewed pub-
lished criteria that they considered comprehensively reflected the 
criteria that are commonly used in evaluating both patient-centred and 
professional-centred aspects of clinical diagnostic dialogue—that is, 
identifying the consensus for PCCBP in medical interviews19, the criteria 
examined for history-taking skills by the Royal College of Physicians 
in the United Kingdom as part of their PACES (https://www.mrcpuk.
org/mrcpuk-examinations/paces/marksheets)20 and the criteria pro-
posed by the UK GMCPQ (https://edwebcontent.ed.ac.uk/sites/default/
files/imports/fileManager/patient_questionnaire%20pdf_48210488.
pdf) for doctors seeking patient feedback as part of professional 
revalidation (https://www.gmc-uk.org/registration-and-licensing/
managing-your-registration/revalidation/revalidation-resources).

The resulting evaluation framework enabled assessment from two 
perspectives—the clinician, and lay participants in the dialogues (that 
is, the patient-actors). The framework included the consideration 
of consultation quality, structure and completeness, and the roles, 
responsibilities and skills of the interviewer (Extended Data Tables 1–3).

Remote OSCE study design. To compare AMIE’s performance to that 
of real clinicians, we conducted a randomized crossover study of blind-
ed consultations in the style of a remote OSCE. Our OSCE study involved 
20 board-certified PCPs and 20 validated patient-actors, ten each from 
India and Canada, respectively, to partake in online text-based consul-
tations (Extended Data Fig. 1). The PCPs had between 3 and 25 years of 
post-residency experience (median 7 years). The patient-actors com-
prised of a mix of medical students, residents and nurse practitioners 
with experience in OSCE participation. We sourced 159 scenario packs 
from India (75), Canada (70) and the United Kingdom (14).

The scenario packs and simulated patients in our study were pre-
pared by two OSCE laboratories (one each in Canada and India), each 
affiliated with a medical school and with extensive experience in pre-
paring scenario packs and simulated patients for OSCE examinations. 
The UK scenario packs were sourced from the samples provided on 
the Membership of the Royal Colleges of Physicians UK website. Each 
scenario pack was associated with a ground-truth diagnosis and a set of 
acceptable diagnoses. The scenario packs covered conditions from the 
cardiovascular (31), respiratory (32), gastroenterology (33), neurology 
(32), urology, obstetric and gynaecology (15) domains and internal med-
icine (16). The scenarios are listed in Supplementary Information sec-
tion 8. The paediatric and psychiatry domains were excluded from this  
study, as were intensive care and inpatient case management scenarios.

Indian patient-actors played the roles in all India scenario packs and 
7 of the 14 UK scenario packs. Canadian patient-actors participated in 

scenario packs for both Canada and the other half of the UK-based sce-
nario packs. This assignment process resulted in 159 distinct simulated 
patients (that is, scenarios). Below, we use the term ‘OSCE agent’ to refer 
to the conversational counterpart interviewing the patient-actor—
that is, either the PCP or AMIE. Supplementary Table 1 summarizes the 
OSCE assignment information across the three geographical locations. 
Each of the 159 simulated patients completed the three-step study flow 
depicted in Fig. 2.

Online text-based consultation. The PCPs and patient-actors were 
primed with sample scenarios and instructions, and participated in 
pilot consultations before the study began to familiarize them with 
the interface and experiment requirements.

For the experiment, each simulated patient completed two online 
text-based consultations by means of a synchronous text-chat interface 
(Extended Data Fig. 1), one with a PCP (control) and one with AMIE 
(intervention). The ordering of the PCP and AMIE was randomized and 
the patient-actors were not informed as to which they were talking to 
in each consultation (counterbalanced design to control for any poten-
tial order effects). The PCPs were located in the same country as the 
patient-actors, and were randomly drawn based on availability at the 
time slot specified for the consultation. The patient-actors role-played 
the scenario and were instructed to conclude the conversation after 
no more than 20 minutes. Both OSCE agents were asked (the PCPs 
through study-specific instructions and AMIE as part of the prompt 
template) to not reveal their identity, or whether they were human, 
under any circumstances.

Post-questionnaires. Upon conclusion of the consultation, the 
patient-actor and OSCE agent each filled in a post-questionnaire in 
light of the resulting consultation transcript (Extended Data Fig. 1). 
The post-questionnaire for patient-actors consisted of the complete 
GMCPQ, the PACES components for ‘Managing patient concerns’ and 
‘Maintaining patient welfare’ (Extended Data Table 1) and a checklist 
representation of the PCCBP category for ‘Fostering the relationship’ 
(Extended Data Table 2). The responses the patient-actors provided 
to the post-questionnaire are referred to as ‘patient-actor ratings’. The 
post-questionnaire for the OSCE agent asked for a ranked DDx list with a 
minimum of three and no more than ten conditions, as well as recommen-
dations for escalation to in-person or video-based consultation, inves-
tigations, treatments, a management plan and the need for a follow-up.

Specialist physician evaluation. Finally, a pool of 33 specialist phy-
sicians from India (18), North America (12) and the United Kingdom 
(3) evaluated the PCPs and AMIE with respect to the quality of their 
consultation and their responses to the post-questionnaire. During 
evaluation, the specialist physicians also had access to the full scenario 
pack, along with its associated ground-truth differential and addi-
tional accepted differentials. All of the data the specialist physicians 
had access to during evaluation are collectively referred to as ‘OSCE 
data’. Specialist physicians were sourced to match the specialties and 
geographical regions corresponding to the scenario packs included 
in our study, and had between 1 and 32 years of post-residency experi-
ence (median 5 years). Each set of OSCE data was evaluated by three 
specialist physicians randomly assigned to match the specialty and 
geographical region of the underlying scenario (for example, Cana-
dian pulmonologists evaluated OSCE data from the Canada-sourced 
respiratory medicine scenario). Each specialist evaluated the OSCE 
data from both the PCP and AMIE for each given scenario. Evaluations 
for the PCP and AMIE were conducted by the same set of specialists in 
a randomized and blinded sequence.

Evaluation criteria included the accuracy, appropriateness and 
comprehensiveness of the provided DDx list, the appropriateness of 
recommendations regarding escalation, investigation, treatment, 
management plan and follow-up (Extended Data Table 3) and all PACES 
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(Extended Data Table 1) and PCCBP (Extended Data Table 2) rating 
items. We also asked specialist physicians to highlight confabula-
tions in the consultations and questionnaire responses—that is, text 
passages that were non-factual or that referred to information not 
provided in the conversation. Each OSCE scenario pack additionally 
supplied the specialists with scenario-specific clinical information 
to assist with rating the clinical quality of the consultation, such as 
the ideal investigation or management plans, or important aspects 
of the clinical history that would ideally have been elucidated for the 
highest quality of consultation possible. This follows the common 
practice for instructions for OSCE examinations, in which specific 
clinical scenario-specific information is provided to ensure consist-
ency among examiners, and follows the paradigm demonstrated by 
Membership of the Royal Colleges of Physicians sample packs. For 
example, this scenario (https://www.thefederation.uk/sites/default/
files/Station%202%20Scenario%20Pack%20%2816%29.pdf) informs 
an examiner that, for a scenario in which the patient-actor has haem-
optysis, the appropriate investigations would include a chest X-ray, 
a high-resolution computed tomography scan of the chest, a bron-
choscopy and spirometry, whereas bronchiectasis treatment options 
a candidate should be aware of should include chest physiotherapy, 
mucolytics, bronchodilators and antibiotics.

Statistical analysis and reproducibility. We evaluated the top-k accu-
racy of the DDx lists generated by AMIE and the PCPs across all 159 simu-
lated patients. Top-k accuracy was defined as the percentage of cases 
where the correct ground-truth diagnosis appeared within the top-k 
positions of the DDx list. For example, top-3 accuracy is the percentage 
of cases for which the correct ground-truth diagnosis appeared in the 
top three diagnosis predictions from AMIE or the PCP. Specifically, 
a candidate diagnosis was considered a match if the specialist rater 
marked it as either an exact match with the ground-truth diagnosis, 
or very close to or closely related to the ground-truth diagnosis (or 
accepted differential). Each conversation and DDx was evaluated by 
three specialists, and their majority vote or median rating was used to 
determine the accuracy and quality ratings, respectively.

The statistical significance of the DDx accuracy was determined using 
two-sided bootstrap tests57 with 10,000 samples and false discovery 
rate (FDR) correction58 across all k. The statistical significance of the 
patient-actor and specialist ratings was determined using two-sided  
Wilcoxon signed-rank tests59, also with FDR correction. Cases where 
either agent received ‘Cannot rate/Does not apply’ were excluded 
from the test. All significance results are based on P values after FDR  
correction.

Additionally, we reiterate that the OSCE scenarios themselves were 
sourced from three different countries, the patient-actors came from 
two separate institutions in Canada and India, and the specialist evalu-
ations were triplicate rated in this study.

Related work
Clinical history-taking and the diagnostic dialogue. History-taking 
and the clinical interview are widely taught in both medical schools 
and postgraduate curricula60–65. Consensus on physician–patient com-
munication has evolved to embrace patient-centred communication 
practices, with recommendations that communication in clinical 
encounters should address six core functions—fostering the relation-
ship, gathering information, providing information, making decisions, 
responding to emotions and enabling disease- and treatment-related 
behaviour19,66,67. The specific skills and behaviours for meeting these 
goals have also been described, taught and assessed19,68 using validated 
tools68. Medical conventions consistently cite that certain categories 
of information should be gathered during a clinical interview, compris-
ing topics such as the presenting complaint, past medical history and 
medication history, social and family history, and systems review69,70. 
Clinicians’ ability to meet these goals is commonly assessed using the 

framework of an OSCE4,5,71. Such assessments vary in their reproduc-
ibility or implementation, and have even been adapted for remote 
practice as virtual OSCEs with telemedical scenarios, an issue of par-
ticular relevance during the COVID-19 pandemic72.

Conversational AI and goal-oriented dialogue. Conversational AI 
systems for goal-oriented dialogue and task completion have a rich 
history73–75. The emergence of transformers76 and large language mod-
els15 have led to renewed interest in this direction. The development of 
strategies for alignment77, self-improvement78–81 and scalable oversight 
mechanisms82 has enabled the large-scale deployment of such conver-
sational systems in the real world16,83. However, the rigorous evaluation 
and exploration of conversational and task-completion capabilities of 
such AI systems remains limited for clinical applications, where stud-
ies have largely focused on single-turn interaction use cases, such as 
question-answering or summarization.

AI for medical consultations and diagnostic dialogue. The majority 
of explorations of AI as tools for conducting medical consultations have 
focused on ‘symptom-checker’ applications rather than a full natural 
dialogue, or on topics such as the transcription of medical audio or 
the generation of plausible dialogue, given clinical notes or summa-
ries84–87. Language models have been trained using clinical dialogue 
datasets, but these have not been comprehensively evaluated88,89. Stud-
ies have been grounded in messages between doctors and patients in 
commercial chat platforms (which may have altered doctor–patient 
engagement compared to 1:1 medical consultations)55,90,91. Many have 
focused largely on predicting next turns in the recorded exchanges 
rather than clinically meaningful metrics. Also, to date, there have been 
no reported studies that have examined the quality of AI models for 
diagnostic dialogue using the same criteria used to examine and train 
human physicians in dialogue and communication skills, nor studies 
evaluating AI systems in common frameworks, such as the OSCE.

Evaluation of diagnostic dialogue. Prior frameworks for the human 
evaluation of AI systems’ performance in diagnostic dialogue have been 
limited in detail. They have not been anchored in established criteria for 
assessing communication skills and the quality of history-taking. For 
example, ref. 56 reported a five-point scale describing overall ‘human 
evaluation’, ref . 90 reported ‘relevance, informativeness and human 
likeness’, and ref . 91 reported ‘fluency, expertise and relevance’, whereas 
other studies have reported ‘fluency and adequacy’92 and ‘fluency and 
specialty’93. These criteria are far less comprehensive and specific than 
those taught and practiced by medical professionals. A multi-agent 
framework for assessing the conversational capabilities of LLMs was in-
troduced in ref. 88, the study, however, was performed in the restricted 
setting of dermatology, used AI models to emulate both the doctor and 
patient sides of simulated interactions, and it performed limited expert 
evaluation of the history-taking as being complete or not.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Many of the real-world datasets used in the development of AMIE are 
open-source, including MedQA (https://github.com/jind11/MedQA), 
MultiMedQA (https://www.nature.com/articles/s41586-023-06291-2# 
data-availability) and MIMIC-III (https://physionet.org/content/
mimiciii/1.4/). The scenario packs from the United Kingdom used in 
the OSCE study are also available for download from https://www.
thefederation.uk/sites/default/files/documents/Station%202%20
Scenario%20Pack%20%2816%29.pdf. Additional scenario packs used 
in the study will be made available upon request.
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Code availability
AMIE is an LLM-based research AI system for diagnostic dialogue. 
Reviewers were provided access to the system through a testing 
program to interact with the system and evaluate the performance. 
We are not open-sourcing model code and weights due to the safety 
implications of the unmonitored use of such a system in medical set-
tings. In the interest of responsible innovation, we will be working with 
research partners, regulators and providers to validate and explore 
safe onward uses of AMIE. For reproducibility, we have documented 
technical deep-learning methods while keeping the paper accessible to 
a clinical and general scientific audience. Our work builds upon PaLM 2,  
for which technical details have been described extensively in the 
technical report10. All analyses were conducted using Python v.2.7.18 
(https://www.python.org/).
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Extended Data Fig. 1 | User interfaces for the online consultation and 
evaluation processes. Online consultations between patient actors and either 
AMIE or the primary care physicians (PCPs) were conducted by means of a 
synchronous text-based chat interface. The evaluation process was facilitated 

through a rating interface in which specialist physicians were provided the 
scenario information including differential diagnosis answer key, as well as a 
consultation transcript along with post-questionnaire responses from AMIE or 
the PCPs. Rating prompts were provided alongside these pieces of information.
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Extended Data Fig. 2 | DDx top-k accuracy for non-disease-states and 
positive disease-states. a,b: Specialist rated DDx top-k accuracy for the 149 
“positive” scenarios with respect to (a) the ground-truth diagnosis and (b) the 
accepted differentials. c,d: Specialist rated DDx top-k accuracy for the 10 
“negative” scenarios with respect to (c) the ground-truth diagnosis and (d) the 
accepted differentials. Using two-sided bootstrap tests (n = 10,000) with FDR 
correction, differences in the “positive” scenarios were significant (P <0.05)  
for all k, but differences in “negative” scenarios were not significant due to  
the small sample size. Centrelines correspond to the average top-k accuracy, 
with 95% confidence intervals shaded. The FDR-adjusted P values for positive 
disease states, ground-truth comparison: 0.0041 (k = 1), 0.0002 (k = 2),  

0.0001 (k = 3), 0.0002 (k = 4), 0.0001 (k = 5), 0.0002 (k = 6), 0.0002 (k = 7), 
0.0003 (k = 8), 0.0001 (k = 9) and 0.0001 (k = 10) (a). The FDR-adjusted P values 
for positive disease states, accepted differential comparison: 0.0002 (k = 1), 
0.0001 (k = 2), 0.0002 (k = 3), 0.0003 (k = 4), 0.0001 (k = 5), 0.0001 (k = 6), 
0.0001 (k = 7), 0.0001 (k = 8), 0.0001 (k = 9) and 0.0001 (k = 10) (b). The  
FDR-adjusted P values for non-disease states, ground-truth comparison: 
0.1907 (k = 1), 0.1035 (k = 2), 0.1035 (k = 3), 0.1035 (k = 4), 0.1035 (k = 5), 0.1035 
(k = 6), 0.1035 (k = 7), 0.1035 (k = 8), 0.1035 (k = 9) and 0.1035 (k = 10) (c). The  
FDR-adjusted P values for non-disease states, accepted differential comparison: 
0.1035 (k = 1), 0.1035 (k = 2), 0.1829 (k = 3), 0.1035 (k = 4), 0.1035 (k = 5), 0.1035 
(k = 6), 0.1035 (k = 7), 0.1035 (k = 8), 0.1035 (k = 9) and 0.1035 (k = 10) (d).



Extended Data Fig. 3 | Specialist rated DDx accuracy by scenario specialty. 
Top-k DDx accuracy for scenarios with respect to the ground-truth in (a) 
Cardiology (N = 31, not significant), (b) Gastroenterology (N = 33, not significant), 
(c) Internal Medicine (N = 16, significant for all k), (d) Neurology (N = 32, 
significant for k > 5), (e) Obstetrics and Gynaecology (OBGYN)/Urology (N = 15, 
not significant), (f) Respiratory (N = 32, significant for all k). Two-sided bootstrap 
tests (n = 10,000) with FDR correction were used to assess significance (P < 0.05) 
on these cases. Centrelines correspond to the average top-k accuracy, with 95% 
confidence intervals shaded. The FDR-adjusted P values for Cardiology: 0.0911 
(k = 1), 0.0637 (k = 2), 0.0637 (k = 3), 0.0911 (k = 4), 0.0911 (k = 5), 0.0929 (k = 6), 
0.0929 (k = 7), 0.0929 (k = 8), 0.0929 (k = 9) and 0.0929 (k = 10) (a). The  
FDR-adjusted P values for Gastroenterology: 0.4533 (k = 1), 0.1735 (k = 2),  

0.1735 (k = 3), 0.1735 (k = 4), 0.1735 (k = 5), 0.1735 (k = 6), 0.1735 (k = 7), 0.1735 (k = 8), 
0.1735 (k = 9) and 0.1735 (k = 10) (b). The FDR-adjusted P values for Internal 
Medicine: 0.0016 (k = 1), 0.0102 (k = 2), 0.0216 (k = 3), 0.0216 (k = 4), 0.0013 (k = 5), 
0.0013 (k = 6), 0.0013 (k = 7), 0.0013 (k = 8), 0.0013 (k = 9) and 0.0013 (k = 10) (c). 
The FDR-adjusted P values for Neurology: 0.2822 (k = 1), 0.1655 (k = 2), 0.1655 
(k = 3), 0.069 (k = 4), 0.069 (k = 5), 0.0492 (k = 6), 0.0492 (k = 7), 0.0492 (k = 8), 
0.0492 (k = 9) and 0.0492 (k = 10) (d). The FDR-adjusted P values for OBGYN/
Urology: 0.285 (k = 1), 0.1432 (k = 2), 0.1432 (k = 3), 0.1432 (k = 4), 0.1432 (k = 5), 
0.1432 (k = 6), 0.1432 (k = 7), 0.1432 (k = 8), 0.1432 (k = 9) and 0.1432 (k = 10) (e). 
The FDR-adjusted P values for Respiratory: 0.0004 (k = 1), 0.0004 (k = 2), 0.0004 
(k = 3), 0.0004 (k = 4), 0.0004 (k = 5), 0.0006 (k = 6), 0.0006 (k = 7), 0.0006 (k = 8), 
0.0006 (k = 9) and 0.0006 (k = 10) (f).
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Extended Data Fig. 4 | DDx accuracy by location. a, b: Specialist DDx rating of 
AMIE and the PCPs with respect to the ground-truth for the 77 cases conducted 
in Canada (a) and 82 cases in India (b). The differences between AMIE and  
the PCPs performance are significant for all values of k. c, d: Auto-evaluation 
rated DDx for 40 scenarios which were duplicated in both Canada and India  
for AMIE (c) and the PCPs (d). The differences between Canada and India 
performance are not significant on these shared scenarios, for both AMIE  
and the PCPs. Significance was determined using two-sided bootstrap tests 
(n = 10,000) with FDR correction. Centrelines correspond to the average top-k 
accuracy, with 95% confidence intervals shaded. The FDR-adjusted P values for 
Canada comparison: 0.0438 (k = 1), 0.0289 (k = 2), 0.0438 (k = 3), 0.0305 (k = 4), 

0.0267 (k = 5), 0.0267 (k = 6), 0.0267 (k = 7), 0.0305 (k = 8), 0.0305 (k = 9) and 
0.0276 (k = 10) (a). The FDR-adjusted P values for India comparison: 0.0037 
(k = 1), 0.0005 (k = 2), 0.0005 (k = 3), 0.0013 (k = 4), 0.0013 (k = 5), 0.0009 (k = 6), 
0.0009 (k = 7), 0.0005 (k = 8), 0.0005 (k = 9) and 0.0005 (k = 10) (b). The  
FDR-adjusted P values for shared AMIE scenarios: 0.3465 (k = 1), 0.3465 (k = 2), 
0.4109 (k = 3), 0.4109 (k = 4), 0.3465 (k = 5), 0.3465 (k = 6), 0.3465 (k = 7), 0.3465 
(k = 8), 0.3465 (k = 9) and 0.3465 (k = 10) (c). The FDR-adjusted P values for 
shared PCP scenarios: 0.3905 (k = 1), 0.4356 (k = 2), 0.3905 (k = 3), 0.3905 (k = 4), 
0.3905 (k = 5), 0.3905 (k = 6), 0.3905 (k = 7), 0.3905 (k = 8), 0.3905 (k = 9) and 
0.3905 (k = 10) (d).



Extended Data Fig. 5 | Auto-evaluation of DDx performance. a, b: Top-k DDx 
auto-evaluation of AMIE’s and the PCP’s differential diagnoses from their own 
consultations with respect to the ground-truth (a, significant for k > 3) and 
the list of accepted differentials (b, significant for k > 4). c, d: Top-k DDx auto-
evaluation of AMIE’s differential diagnoses when provided its own vs. the PCP’s 
consultation transcript with respect to the ground-truth (c, not significant) 
and the list of accepted differentials (d, not significant). Two-sided bootstrap 
tests (n = 10,000) with FDR correction were used to assess significance (P < 0.05) 
on these 159 cases. Centrelines correspond to the average top-k accuracy,  
with 95% confidence intervals shaded. The FDR-adjusted P values for AMIE vs. 
the PCP ground-truth comparison: 0.1399 (k = 1), 0.0737 (k = 2), 0.0596 (k = 3), 

0.0315 (k = 4), 0.0221 (k = 5), 0.0315 (k = 6), 0.0182 (k = 7), 0.0221 (k = 8), 0.0182 
(k = 9) and 0.0182 (k = 10) (a). The FDR-adjusted P values for AMIE vs. the PCP 
accepted differential comparison: 0.2297 (k = 1), 0.1713 (k = 2), 0.0779 (k = 3), 
0.0546 (k = 4), 0.018 (k = 5), 0.0174 (k = 6), 0.006 (k = 7), 0.0033 (k = 8), 0.0033 
(k = 9) and 0.0033 (k = 10) (b). The FDR-adjusted P values for AMIE vs. the PCP 
consultation ground-truth comparison: 0.4929 (k = 1), 0.4929 (k = 2), 0.4929 
(k = 3), 0.4929 (k = 4), 0.4929 (k = 5), 0.4929 (k = 6), 0.4929 (k = 7), 0.4929 (k = 8), 
0.4929 (k = 9) and 0.4929 (k = 10) (c). The FDR-adjusted P values for AMIE vs. 
the PCP consultation accepted differential comparison: 0.4461 (k = 1), 0.4461 
(k = 2), 0.4461 (k = 3), 0.4461 (k = 4), 0.4461 (k = 5), 0.4461 (k = 6), 0.4461 (k = 7), 
0.4461 (k = 8), 0.4461 (k = 9) and 0.4461 (k = 10) (d).
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Extended Data Fig. 6 | Consultation verbosity and efficiency of information 
acquisition. a, Total patient actor words elicited by AMIE and the PCPs. b, Total 
words sent to patient actor from AMIE and the PCPs. c, Total number of turns in 
AMIE vs. the PCP consultations. For (a-c), Centrelines correspond to the median, 
with the box indicating 25th and 75th percentiles. The minimum and maximum 
are presented as the bottom and top whiskers, respectively, excluding the 
outliers which are defined as data points further than 1.5 times the inter-quartile 

range from the box. d, e: The top-3 auto-evaluation rated DDx accuracy of AMIE 
using the first T turns of each consultation, with respect to the ground-truth 
diagnosis (d) and the accepted differentials (e). Differences on these 159 cases 
are not significant (P > 0.05) when compared through two-sided bootstrap 
tests (n = 10,000) with FDR correction. Centrelines correspond to the average 
top-3 accuracy, with 95% confidence intervals shaded.



Extended Data Table 1 | Practical Assessment of Clinical Examination Skills (PACES) rubric details
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Extended Data Table 2 | Patient-Centred Communication Best Practice (PCCBP) rubric details



Extended Data Table 3 | Diagnosis and Management rubric details
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